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Résumé

Dans ce travail, nous présentons une méthode de résolution du problème inverse bidimensionnel de transfert thermique, dans le cas du traitement
thermique des matériaux à transformation de phases. Cette méthode utilise un schéma de discrétisation par la méthode des éléments finis et
l’algorithme du gradient conjugué. Une validation expérimentale est effectuée sur un traitement par rayons laser sur des échantillons cylindriques
en acier XC42.
© 2008 Publié par Elsevier Masson SAS.
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0. Introduction

Le progrès de la recherche scientifique dans le domaine du
traitement thermique des matériaux métalliques est confronté
à un problème métrologique qui est celui de la mesure de la
densité d’énergie appliquée à la surface de l’échantillon traité
lors du chauffage.

Pour résoudre ce genre de problème nous utilisons des me-
sures de température effectuées à l’intérieur de la pièce traitée.

* Auteur correspondant.
Adresse e-mail : mohamedmaniana@hotmail.com (M. Maniana).
1290-0729/$ – see front matter © 2008 Publié par Elsevier Masson SAS.
doi:10.1016/j.ijthermalsci.2008.05.018
D’un point de vue mathématique, ce problème s’identifie à un
problème « mal-posé » qui implique la nécessité de la régulari-
sation lors de la résolution numérique inverse de l’équation de
la chaleur couplée avec le changement de la structure métallur-
gique du matériau. Ce qui rend ce problème original c’est la
prise en compte du terme source, dans l’équation de la chaleur
(2.1), calculé à partir de la température et des bilans de phases
solides (constituants) qui apparaissent lors du changement de
structure pendant le chauffage et le refroidissent. La régulari-
sation de ce problème inverse est faite par la l’utilisation de la
méthode itérative du gradient conjugué.
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Nomenclature

cp chaleur massique . . . . . . . . . . . . . . . . . . . J kg−1 K−1

d direction de descente
Dd diamètre de défocalisation . . . . . . . . . . . . . . . . . . mm
Df distance focale . . . . . . . . . . . . . . . . . . . . . . . . . . . . mm
E erreur (écart de température mesurée et calculée)

au point de mesure . . . . . . . . . . . . . . . . . . . . . . . . . . K
hc coefficient de transfert de chaleur par

convection . . . . . . . . . . . . . . . . . . . . . . . . W m−2 K−1

hr coefficient de perte par rayonnement W m−2 K−1

k conductivité thermique . . . . . . . . . . . . . W m−1 K−1

m indice de la position du thermocouple
Nc nombre de thermocouples
q source d’énergie . . . . . . . . . . . . . . . . . . . . . . . W m−3

r coordonnée spatiale suivant le rayon
R rayon de l’éprouvette
t temps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
tf temps final . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
u température calculée . . . . . . . . . . . . . . . . . . . . . . . . . K
u∞ température de l’environnement . . . . . . . . . . . . . . K

us temperature au point considéré . . . . . . . . . . . . . . . K
Yk % en volume du constituant k

Ym température mesurée . . . . . . . . . . . . . . . . . . . . . . . . K
z coordonnée spatiale suivant la hauteur
Z fonction recherchée (densité du flux à la surface

traitée) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W m−2

α(u) facteur d’absorption (<1)
δu fonction de sensibilité
�H enthalpie de transformation . . . . . . . . . . . . . . . J m−3

ε émissivité de la surface (ε = 0.9 à haute tempéra-
ture)

γ profondeur de descente
Γ surface traitée
ϕ(r) densité du flux laser incident . . . . . . . . . . . . W m−2

ϕp(u) densité du flux de perte thermique . . . . . . . W m−2

ϕs(r, t) densité du flux total . . . . . . . . . . . . . . . . . . . . W m−2

ρ masse volumique. . . . . . . . . . . . . . . . . . . . . . . kg m−2

σ constante de Stefan . . . . . . . . . . . . . . . . W m−2 K−4

ψ fonction adjointe

Fig. 1. Problème physique.
Le principe de résolution consiste à déterminer la densité qui
fait confondre la température calculée avec une ou plusieurs
mesures prises à l’intérieur ou sur les frontières du corps étu-
dié. Mathématiquement cela revient à résoudre un problème dit
« inverse » [1–15]. L’ensemble de ces travaux dans ce domaine
montre l’intérêt pratique de l’utilisation des techniques inverses
dans la résolution des problèmes thermiques.

1. Position du problème

Dans le domaine du traitement thermique superficiel des
aciers, le chauffage par faisceau laser CO2 est une technique
en plein développement. Dans ce procédé l’énergie générée par
le laser est absorbée dans une zone superficielle et le refroidis-
sement est assuré par conduction dans le reste du volume du
métal non affecté thermiquement. D’un point de vue métallur-
gique, l’obtention d’une austénitisation superficielle est alors
réalisée en ajustant la puissance du laser (le cycle thermique)
et l’apparition d’une microstructure martensitique à la fin du
traitement est obtenue sans l’utilisation d’un fluide de refroi-
dissement. Ici le refroidissement est imposé par la conduction,
du volume de métal non affecté par la chaleur, et par rayonne-
ment et convection à la surface de l’échantillon.

Ce problème consiste à estimer la répartition de d’énergie
dans le faisceau laser appliqué sur une partie de la surface d’un
échantillon métallique de forme cylindrique au cours de son
traitement thermique Fig. 1.

Traditionnellement, les techniques utilisées pour obtenir la
répartition spatiale de cette densité d’énergie consistent à effec-
tuer une série de tir laser sur une plaque épaisse de plexiglas.
Ces tirs laser donnent lieu à des empreintes (Fig. 2(a)) dont la
forme est une reproduction de la distribution spatiale de l’éner-
gie. A partir de cette empreinte la répartition spatiale de l’éner-
gie (Fig. 2(b)) est calculée par intégration mathématique.

Nous avons modélisé mathématiquement ce problème par
un « problème inverse » qui consiste à estimer l’évolution de
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(a) Section d’une empreinte sur plexiglas.

(b) Distribution d’énergie, obtenue par intégration mathématique.

Fig. 2. Distribution de l’énergie thermique sur la surface traitée.

la température et de la densité du flux de chaleur à la surface
traitée à partir de la mesure de température en quelques points
pris sur l’axe de l’échantillon Fig. 1.

Dans cette modélisation nous avons tenu compte des hypo-
thèses suivantes :

1. Cylindre de hauteur h et de rayon R soumis à un flux de
chaleur sur une portion de sa surface extérieure.

2. Problème axisymétrique (ne dépendant pas de l’angle po-
laire).

3. La densité de flux de chaleur est fonction du temps et de
l’espace.

D’après la deuxième hypothèse, le domaine d’étude se ré-
duit à un rectangle de longueur h et de largeur R. Ce domaine
représente la moitié de la section longitudinale de l’échantillon
traité Fig. 3.

2. Problème direct

Ce problème consiste à calculer l’évolution de la tempé-
rature au sein de l’échantillon à chaque instant du traitement
thermique connaissant le flux de chaleur appliqué à la surface
de cet échantillon.

Les équations du problème direct en deux dimensions sont
obtenues par l’établissement de l’équation de la chaleur en te-
nant compte de la source thermique liée aux transformations de
phases, à l’état solide.

ρc
∂u(r, z, t)

∂t
+ div

(−k(u)∇u
) = q(u, yk) dans Ω (2.1)

Conditions aux limites :
Dimensions du
domaine d’étude :
R = 8 mm
h = 50 mm

Coordonnées des
points de mesure :
1 (0,0.0)

2 (0,0.3)

3 (0,0.6)

4 (0,1.5)

Fig. 3. Géométrie du problème inverse.

−k(u)
∂u(r, z, t)

∂n
= ϕs(r, t) sur la frontière Γ (2.2)

Condition initiale :

u(r, z,0) = u0(r, z) à l’instant t = 0 (2.3)

Le second membre de l’équation (2.1) représente la source ther-
mique liée aux transformations de phases produites par l’évolu-
tion de la température :

q =
∑

k

�H
∂yk

∂t
(2.4)

�H : enthalpie volumique de transformation (J/m3), yk : % en
volume du constituant k formé lors de cette transformation. Le
calcul de ces pourcentages est effectué en utilisant les lois sui-
vantes :

Transformation au chauffage : (perlite et ferrite en austénite)

Loi de Jonson–Mehl–Avrami : yk = ymax k[1 − exp(−bk ∗ tnk)]
k = 1 : perlite, k = 2 : ferrite, k = 3 : austénite, ymax k : frac-
tion maximale qui peut se transformer. nk et bk : paramètres
dépendants de la température u.

nk(u) = log[1 − y1]/ log[1 − y2]
log(t1/t2)

; bk(u) = log(1 − y1)

t
nk

1

tk : temps qui correspond au palier de transformation du consti-
tuant k.

Transformation au refroidissement : (austénite en marten-
site)

Loi de Koistinen et Marburger :

yk = yk

[
1 − exp

(−Am(Msk − n)
)]

Am : coefficient de Koistinen, Msk : température de début de
transformation martensitique, u : température courante.

ϕs(r, t) est le flux de chaleur appliqué à la surface. Ce flux
s’écrit sous la forme suivante :

ϕs(r, t) = α(u)ϕ(r) + ϕp(u) (2.5)

où ϕ(r) est la densité de flux de chaleur laser incidente, α(u)

le facteur d’absorption, ϕp(u) la densité de flux de chaleur de
perte thermique et α(u)ϕ(r) représente la densité de flux de
chaleur laser réellement absorbée par la surface avec α(u) � 1.
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• Les pertes thermiques par convection naturelle sur les dif-
férentes faces du barreau sont prises en compte par un co-
efficient de transfert de chaleur hc.

• Les pertes par rayonnement, qui augmentent rapidement
avec la température, sont décrites par une loi linéarisée.

hr = σε(u2∞ + u2
s )(u∞ + us) (2.6)

La densité du flux totale de perte est :

ϕp(u) = (hc + hr)(us − u∞) (2.7)

La résolution de ce problème direct est faite suivant un
schéma de discrétisation par la méthode des éléments finis.

3. Résolution du problème inverse

Le principe de résolution de ce problème inverse consiste a
estimer la densité du flux de chaleur Z(r, t), appliquée à la sur-
face traitée de l’échantillon, qui fait confondre les températures
u(t), calculées par une méthode directe, avec les températures
Ym(t), mesurées expérimentalement.

Pour remédier à des problèmes de stabilité et d’unicité de
la solution nous avons formulé ce problème sous forme d’op-
timisation d’une fonctionnelle J (Z) définie par l’équation sui-
vante :

J (Z) = 1

2

tf∫

0

Nc∑
m=1

[
u(rm, zm, t,Z) − Ym(t)

]2
dt (3.1)

Où Nc est le nombre de thermocouples, m l’indice du point de
mesure et Ym la température mesurée en ce point.

Dans la résolution de ce problème inverse, nous avons uti-
lisé la méthode du gradient conjugué pour obtenir une quasi-
solution stable.

Le principe de cette méthode consiste à calculer le nouvel
itéré Zn+1 par l’application de la relation suivante : Zn+1 =
Zn − γ ndn, où γ n est la profondeur de descente et dn est la
direction de descente.

Ceci nous a conduit à résoudre trois problèmes successifs :
(i) problème direct, (ii) problème adjoint, (iii) problème de sen-
sibilité.

(i) Problème direct
Il est défini mathématiquement au paragraphe précédent. Ce

problème est résolu en utilisant le flux estimé par le problème
inverse à chaque itération (n) et nous permet de calculer l’erreur
de température définie par l’écart entre la température calcu-
lée et celle relevée expérimentalement à chaque instant et en
chaque point de mesure.

E(r, z, t,Z) =
Nc∑

m=1

(
u(rm, zm, t,Z) − Ym(t)

)
(3.2)

(ii) Problème adjoint
Ce problème consiste à rechercher une fonction adjointe

ψ(r, z, t) qui conduit à la détermination de l’expression du gra-
dient de la fonctionnelle à minimiser J (Z). Ceci représente une
étape principale et nécessaire à l’algorithme de résolution.
Les équations du problème adjoint sont les suivantes :

ρCp(u)
∂ψ(r, z, t)

∂t
+ k(u)�ψ(r, z, t)

= E(rm, zm, t,Z) − ∂q

∂u
ψ(r, z, t) (3.3)

Conditions aux limites :

k(u)
∂ψ(r, z, t)

∂n
= 0 sur la frontière Γ (3.4)

ψ(r, z, tf ) = 0 à l’instant final t = tf (3.5)

• Expression du gradient :
Lorsque ψ est solution des équations (3.3)–(3.5), et u solu-

tion du problème direct (équations (2.1)–(2.3)), on peut démon-
trer facilement que :

J ′(Z) = ψ(r, z, t) (3.6)

(iii) Problème de sensibilité
Ce problème permet d’évaluer la sensibilité du champ de

température δu à la variation δZ de la densité du flux de chaleur
(fonction inconnue).

Les équations de sensibilité sont définies comme suit :

∂(ρCp(u)δu(r, z, t))

∂t
− �

(
k(u)δu(r, z, t)

)

= ∂q(r, z, t)

∂u
δu(r, z, t) dans Ω (3.7)

Conditions aux limites :

∂(k(u)δu(r, z, t))

∂n
= δϕ(r, z, t) sur la frontière Γ (3.8)

Condition initiale :

δu(r, z,0) = 0 à l’instant t = 0 (3.9)

L’inconnue des équations de sensibilité est δu. ρCp(u) et
k(u) sont des paramètres qui dépendent de la solution du pro-
blème direct u et non pas de δu, par conséquent les équations de
sensibilité (3.7)–(3.9) sont des équations linéaires et couplées
aux équations du problème direct (2.1)–(2.2).

• Expression de la profondeur de descente
Dans la mise en œuvre de l’algorithme du gradient conju-

gué, il est nécessaire de déterminer γ qui minimise la fonction
g(γ ) = J (Z − γ d).

D’après l’équation (2.1) on a :

J (Z − γ d) = 1

2

tf∫

0

Nc∑
m=1

[
u(rm, zm, t,Z − γ d) − Ym(t)

]2
dt

(3.10)

En choisissant d = δZ, la minimisation monodimensionnelle
de J (Z − γ d) entraîne :

dJ (Z − γ d)

dγ
= 0

L’expression analytique de la profondeur de descente est :
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γ =
∫ tf

0

∑Nc

m=1(u(rm, zm, t,Z) − Ym(t))δu(rm, zm, t,Z)dt∫ tf
0

∑Nc

m=1(δu(rm, zm, t,Z))2 dt

(3.11)

Algorithme. L’optimisation de la fonctionnelle J (Z) équation
(3.1) par la méthode du gradient conjugué est faite suivant cet
algorithme :

(1) Choisir une valeur initiale Z0(z, t) par exemple Z0(r, t) =
Zestimée(r, t)

Mettre n = 0
(2) Résoudre le problème direct en imposant à la surface la

densité de flux Z0(r, t)

• Déduire u(rm, zm, t,Zn(r, t))

• Calculer le critère J (Zn(r, t)),

J (Zn) = 1

2

tf∫

0

Nc∑
m=1

[
u(rm, zm, t,Zn) − Ym(t)

]2
dt

• Calculer la fonction Erreur E(r, z, t,Zn),

E(rm, zm, t,Z) =
Nc∑

m=1

(
u(rm, zm, t,Z) − Ym(t)

)

(3) Résoudre le problème adjoint.
• déduire le gradient J ′(Zn) = ψ(r, z, t).
• Définir β :
• Si n = 0, βn = 0

Sinon βn = ‖J ′(Zn)‖2

‖J ′(Zn−1)‖2

• Calculer la direction de descente dn = J ′(Zn)+βndn−1

• Mettre δZn = dn

• Résoudre le problème de sensibilité
(4) Déterminer la fonction de sensibilité δu(rm, zm, t,Zn),

m = 1, . . . ,Nc

• Calculer la profondeur de descente γ n

γ n =
∫ tf

0

∑Nc

m=1(u(rm, zm, t,Z) − Ym(t))δu(rm, zm, t,Zn) dt∫ tf
0

∑Nc

m=1(δu(rm, zm, t,Zn))2 dt

(5) Si J (Zn) < Js fin

Sinon itérer : Zn+1(r, t) = Zn(r, t) − γ ndn

Zn(r, t) ← Zn+1(r, t) et aller à (2)

4. Validation numérique

Pour valider numériquement ce modèle thermique nous
avons choisi un cas de traitement fictif plus simple où la densité
d’énergie, représentée par la Fig. 4(a), dans le faisceau laser est
constante et uniforme. Cette densité à été appliquée au modèle
direct pour calculer les températures aux différents points qui
simulent les mesures de température dans le modèle inverse.

Dans une première approche, nous avons considéré le cas
idéal ou les mesures de températures sont exactes, l’écart type
(a) Conductivité thermique

(b) Masse volumique

(c) Chaleur massique

Fig. 4. Evolution des propriétés thermophysiques de la ferrite et de l’austénite
en fonction de la température pour l’acier XC42.

est nul (σ = 0). Dans la Fig. 4(b) nous avons reporté le résul-
tat final de la densité d’énergie estimée par la méthode inverse
comparée à celle imposé dans le modèle direct. Nous remar-
quons qu’il y a une parfaite correspondance entre le résultat
estimé et la valeur choisie pour le test.
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Fig. 5. Résultats estimées dans la première approche : σ = 0 ◦C, dt = 0.001 s, Nc = 4.

Fig. 6. Résultats estimées dans la deuxième approche : σ = 5 ◦C, dt = 0.001 s, Nc = 4.
La Fig. 4(c) montre la décroissance du critère J (Z) en fonc-
tion du nombre d’itérations n, on remarque que dans les pre-
mières itérations le critère décroit fortement puis la décrois-
sance est ralentie quand la solution est proche de la solution
exacte. La dernière itération correspond à l’itération où le cri-
tère commence à croitre. Le critère en fin de processus est
proche de zéro.

• Influence du bruit de mesure
Dans une deuxième approche, pour ne pas resté loin de la

réalité et parce que toute mesure de température est inévita-
blement entachée d’erreurs et étant donné que le problème in-
verse est un problème mal-posé, ces erreurs sont amplifiés si
on ne régularise pas. Pour simuler ces phénomènes physiques
nous avons ajouté aux mesures exactes, un bruit gaussien de
moyenne nulle et d’écart type σ = 5 ◦C.

Nous avons tracé sur la Fig. 6(a) l’évolution de la densité
d’énergie, estimée en tenant compte du bruit de mesure, com-
parée avec la solution exacte. Et sur la même figure le graphe
(b) montre la décroissance du critère de convergence qui tend
vers une valeur asymptotique Js (critère de convergence théo-
rique) qui se présente sous la forme d’un plateau. A l’itération
n = 27 le critère calculé est J = 2599,76.
Js = 0.5NtNcσ
2

Avec Nt est le nombre de pas de temps et Nc est le nombre
de capteurs. D’après le temps final : tf = 0.05 s (temps de
chauffage) et le pas du temps : dt = 0.001 s on en déduit
Nt = tf

dt
= 50, d’où Js = 0.5 × 50 × 4 × 52 = 2500.

• Données d’entrée :
Les données d’entrée pour le calcul direct sont d’une part

les caractéristiques du faisceau laser (puissance totale, diamètre
de défocalisation, distribution d’énergie à l’intérieur du fais-
ceau, temps d’interaction) et d’autre part le facteur d’absorp-
tion et les propriétés thermophysiques du matériau voir Ta-
bleau 1.

Les gradients de température à l’intérieur de la pièce trai-
tée étant élevés, le modèle adopté doit nécessairement tenir
compte de la variation des caractéristiques thermophysiques du
matériau en fonction de cette grandeur. La Fig. 4 présente les
évolutions de λ, ρ et c en fonction de la température pour le
matériau utilisé (acier XC42) [16], les brusques variations de
ces caractéristiques correspondent au changement d’état struc-
tural de cet acier.

La source laser CO2 continue a été utilisée pour irradier per-
pendiculairement la surface circulaire du barreau cylindrique
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u1 : au centre de la surface traité
u2 : à 0,3 mm sous la surface
u3 : à 0,6 mm sous la surface
u4 : à 1,5 mm sous la surface

(a) Températures mesurées expérimentalement

(b) Profil radial de la densité d’énergie calculée par intégration
mathématique

(c) Maillage du domaine de calcul

Fig. 7. Paramètres de calcul, utilisés pour la validation expérimentale.
Tableau 1
Caractéristiques du faisceau laser

Facteur d’absorption α1 = 0,5, α2 = 0,
u < 400 ◦C
α2 = 3,3 × 10−4 ◦C−1,
u > 400 ◦C

Emissivité surface 0,9
Puissance totale (W) 800
Temps d’interaction (s) 0,05
Diamètre de défocalisation (mm) 4
Temps total de traitement (s) 0,15
Coefficient de convection (W/m2 K) 10
Constante de Stefan (W/m2 K4) 5,7

(8 mm de diamètre et 50 mm de hauteur). Les paramètres du
traitement sont regroupés dans le Tableau 1.

5. Validation expérimentale

Cette méthode inverse a été validée expérimentalement par
un cas de traitement superficiel par faisceau laser CO2 de puis-
sance 800 W. La Fig. 7(a) visualise l’évolution de la tempéra-
ture en fonction du temps, mesurée expérimentalement, en dif-
férents points de l’échantillon, la Fig. 7(b) représente la distri-
bution radiale de l’énergie déterminée expérimentalement, par
mesure de l’empreinte (produite par irradiation d’un plexiglas
avec le même faisceau laser) et par intégration mathématique,
du mode utilisé dans ce cas de traitement. La Fig. 7(c), montre
le maillage utilisé pour ce cas de validation.

• Résultats :
– Aspect thermique

En utilisant les évolutions de la température mesurée, aux
quatre points de l’axe de symétrie situés sous la surface traitée
(Fig. 7(a)), nous avons effectué un calcul inverse pour identifier
la répartition spatiale et temporelle de la densité de flux de cha-
leur appliquée à la surface traitée et en déduire la répartition de
l’énergie dans le faisceau laser utilisé pour le chauffage lors du
traitement.

Les calculs sont effectués sur la moitié d’une section longi-
tudinale d’un barreau cylindrique (8 mm de diamètre et 50 mm
de hauteur). Le maillage utilisé dans le calcul est celui repré-
senté dans la Fig. 7(c) avec un pas de temps dt = 10−3 s.

D’un point de vue numérique, nous avons suivi le processus
de recherche de la solution en traçant l’évolution du critère de
convergence de la méthode du gradient conjugué en fonction du
nombre d’itération (Fig. 8(d)). Il est à noter que la convergence
vers la solution est très rapide pendant les premières itérations,
elle est ralentie par la suite pour tendre à la fin vers la solution
pour un nombre d’itération de 20. Sur la Fig. 8(c) nous avons
tracé les résidus de températures Em = (um − Ym). L’indice m

indique la position du capteur de température.
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(a) Evolution des températures (b) Profil d’énergie sur le faisceau laser

(c) Résidus de températures (d) Evolution du critère de convergence en fonction du nombre
d’itération (n)

Fig. 8. Comparaison des résultats estimés et mesurés.
Sur la Fig. 8(a) nous avons tracé les évolutions de tempé-
rature mesurée (dite exacte) et calculée aux quatre points de
mesure définis précédemment. Sur la Fig. 8(b) nous avons re-
présenté l’évolution de la densité du flux de chaleur déterminée
expérimentalement comparée avec celle calculée par la mé-
thode inverse.

La confrontation entre le calcul et l’expérience montre clai-
rement que le modèle thermique mis en oeuvre dans le calcul
inverse donne des résultats très satisfaisants, on effet ce modèle
nous permet d’estimer à la fois la cinétique thermique en tout
points du solide traité et la densité du flux même dans les zones
où les gradients de température sont les plus élevés.

Sur la Fig. 9(a) nous avons représenté l’évolution du profil de
la distribution de l’énergie sur le faisceau laser en fonction du
temps et sur la Fig. 9(b) nous avons reporté l’évolution du profil
du flux de refroidissement, par convection et par rayonnement,
appliqué à la surface traitée après le chauffage.

Sur la même Fig. 9(c) nous avons représenté la distribution
spatiale de l’énergie sur le faisceau laser, estimée par la mé-
thode inverse et représentée en profil sur la Fig. 8(b).

– Aspect métallurgique
Ici nous nous sommes intéressés à identifier et quantifier la

zone affectée thermiquement d’une part sur la surface chauf-
fée par le tir Laser et d’autre part dans la profondeur de la
pièce.

Pour cela nous avons tracé les évolutions, en fonction du
rayon, des taux de phases mis en jeu à la fin du chauffage
Fig. 10(a) et à la fin du refroidissement Fig. 10(b).

Sur les deux figures nous pouvons distinguer deux zones es-
sentielles :

– Zone superficielle 1,5 � r � 4 mm : elle est composée par
la structure ferrito-perlitique initiale (60% de perlite et 40%
de ferrite). Cette zone est restée intacte sur le plan ther-
mique que sur le plan métallurgique.

– Zone centrale de rayon d’environ r = 1,30 mm : elle se ca-
ractérise par une structure quasiment austénitique à la fin de
chauffage. Et une structure essentiellement martensitique à
la fin du refroidissement.

Cette observation est confirmée par le calcul de la du-
reté superficielle (Fig. 11) dans les deux zones. Elle donne
en effet une dureté très élevée (équivalente de la dureté de
la martensite) dans la zone centrale et une dureté très faible
(équivalente à la dureté du mélange perlite-ferrite initial)
ailleurs.
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(a) Densités du flux de chaleur de chauffage

(b) Densité du flux de chaleur de refroidissement

(c) Distribution d’énergie sur le faisceau laser par la méthode inverse

Fig. 9. Estimation d’énergie appliquée sur la surface traitée.

6. Conclusion

L’application de la méthode inverse à la résolution du pro-
blème de traitement thermique par rayon laser, nous a permis de
déterminer la répartition spatio-temporelle de la densité d’éner-
gie appliquée à la surface traitée ainsi que d’autres informations
métallurgiques précieuses liées au traitement thermique des ma-
tériaux à transformations de phases à savoir : la structure mé-
tallurgique finale, la profondeur de traitement et la dureté.
(a) Fin de chauffage

(b) Fin de refroidissement

Fig. 10. Structure métallurgique formée lors du traitement.

Fig. 11. Profil radial de la dureté Hv.

L’utilisation de la méthode du gradient conjugué nous a per-
mis d’obtenir une solution stable et régulière d’un problème dit
« mal posé ».
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